Position domain contour control for multi-DOF robotic system

نویسنده

  • J. Acob
چکیده

Contour tracking control is one of the fundamental operations for robotic systems. In this paper, a position domain PD control is developed to control a multi-DOF nonlinear robotic system for improving contour tracking performance. In this new position domain control system, a robotic system is viewed as a master–slave system where the master motion is used as an independent reference through equidistantly sampling, while slave motions are described as functions of the master motion according to contour tracking requirements. A position domain dynamic model of the robotic system based on the master motion is developed through one-to-one mapping of the original dynamic model from time domain to position domain. Stability analysis is conducted for the proposed position domain PD control, the global boundedness of the tracking errors is guaranteed through the Lyapunov method, and the effectiveness is successfully verified through simulation study for linear and nonlinear contour tracking problems. Compared results demonstrate that the position domain PD control is better than its time domain counterpart for contour tracking of multi-DOF robotic systems. 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload

In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...

متن کامل

Control of a 2-DoF robotic arm using a P300-based brain-computer interface

In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...

متن کامل

Cross-Coupled Contouring Control of Multi-DOF Robotic Manipulator

Reduction of contour error is a very important issue for high precise contour tracking applications, and many control systems were proposed to deal with contour tracking problems for two/three axial translational motion systems. However, there is no research on cross-coupled contour tracking control for serial multi-DOF robot manipulators. In this paper, the contouring control of multi-DOF seri...

متن کامل

Dynamic modeling and control of a 4 DOF robotic finger using adaptive-robust and adaptive-neural controllers

In this research, first, kinematic and dynamic equations of a 4-DOF 3-link robotic finger are derived using Denavit-Hartenberg convention and Lagrange’s formulation. To model the muscles, several springs and dampers are placed between the finger links. Then, two advanced controllers, namely adaptive-robust and adaptive-neural, which can control the robotic finger in presence of parametric uncer...

متن کامل

Dynamics and Motion Control of Wheeled Robotic Systems

Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013